# СНАРТЕR Nuclear Medicine as a Problem Solver in Diagnosis and Therapy

### Vikram R Lele

Nuclear medicine is the modality which uses radioisotopes to study the function of different organs of the body. Radiolabeled compounds which can trace metabolic pathways, enzyme functions, receptors, perfusion etc. are injected into the body and with the help of special equipment called gamma cameras the passage of tracer in the body is imaged. Important information about normal and altered physiological functions in health and disease are obtained with this technique. 2 technologies; SPECT or Single Photon Emission Computed Tomography, nowadays combined with a CT scanner (SPECT-CT) and PET-CT or Positron Emission Tomography combined with CT are routinely available. PET-CT uses very short lived isotopes of 11C, 13N, 14O,18F produced in a cyclotron and labelled with various compounds to give quantitative information about body processes. Combination of physiological information and anatomical structural information make SPECT-CT and PET-CT very powerful tools in diagnosis and management of various diseases.

Nuclear scans, both SPECT and PET-CT are invaluable in management of several diseases and many times act as problem solvers in difficult diagnostic situations. Nuclear medicine is also increasingly used in the therapeutic arena, with successful therapies with radioisotopes available for many diseases.

Tables 1, 2 & 3 summarize the diagnostic utilities of SPECT, PET-CT and Therapy respectively.

Specific examples of clinical situations helped by Nuclear medicine are also discussed later.

#### **CASE EXAMPLES**

#### Case 1

21 yr. old male presented with history of palpitations and weight loss. T3, T4 raised. TSH low. An isotope thyroid scan was asked for to confirm Graves' disease.

Isotope scan showing absent tracer uptake in the thyroid gland with normal uptake in the salivary glands. Diagnosis of Graves' disease was excluded and Thyroiditis was diagnosed, changing the management completely (Figure 1).

#### Case 2

A 35 yr. old female presented with history of irritability, nervousness, weight loss and reduced appetite. T3, T4 elevated, low TSH. Isotope scan was advised:

Isotope scan with 99mTc-pertechnetate scan showing increased intense uptake in the Thyroid gland with no

uptake in the salivary glands, conforming diagnosis of Graves' disease (Figure 2).

In 10% of cases of thyrotoxicosis, what clinically appears as Graves' disease may turn out to be thyroiditis. A thyroid scan is very valuable in making the correct diagnosis and planning therapy.

#### Case 3

77 yr. old male patient presented with slowness in movement and imbalance since 2 months. Parkinsonism was suspected and a TRODAT scan was asked for (Figure 3). <sup>99m</sup>Tc-TRODAT scan showed normal uptake of tracer in both caudate nuclei and both putamen excluding Parkinson's disease. In Parkinson's disease there is deficiency of Dopamine in the dopaminergic neurons projecting to the caudate nuclei and putamina. There is also deficiency of the presynaptic dopamine transporter (imaged by TRODAT scan). This scan shows asymmetrical reduction in dopamine transporter in the putamen opposite to the involved limb with tremor or rigidity in Parkinson's disease and will be normal in essential tremor and drug induced parkinsonism.

#### Case 4

50 yr. old male on antipsychotic medication demonstrated clinical features of parkinsonism. The clinical question was whether he had Parkinson's disease or was manifesting drug effects. A TRODAT scan was asked for which clearly showed deficient uptake in the left putamen, confirming dopaminergic deficit and excluding diagnosis of drug induced parkinsonism (Figure 4).

#### Case 5

22 yr. old male presented with cough and weight loss. X-ray chest showed lung lesions. A PET-CT was asked for. It showed extensive lung metastases and abdominal lymph nodal metastases. A careful review of images showed a small testicular lesion which was picking up the isotope (Figure 5). A diagnosis of testicular cancer with lung and nodal metastases was made, confirmed on orchiectomy. On chemotherapy there was good response with disappearance of all metastatic lesions.

This case demonstrates the utility of FDG PET-CT in detection of occult malignancy, staging of malignancy and demonstrating response to treatment.

Transaxial (left and middle column) and MIP (right column) images of whole body PET-CT with <sup>18</sup>F-FDG. Upper row shows fused PET-CT images, lower row CT images.

| Table 1: Utility of SPECT, SP      |                                   |                                                                                                                                |
|------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Radiopharmaceutical                | Clinical situation                | Information obtained                                                                                                           |
|                                    | Nervous system                    |                                                                                                                                |
| 99mTc-ECD                          | Memory loss                       | Presence of Alzheimer's disease vs Fronto temporal degeneration                                                                |
|                                    | Temporal lobe epilepsy            | Localization of seizure focus                                                                                                  |
| 99mTc-TRODAT                       | Parkinsonism                      | Diagnosis of dopaminergic deficit. Differentiate<br>Parkinson's disease from essential tremor and drug<br>induced Parkinsonism |
|                                    | Thyroid and parathyroid           |                                                                                                                                |
| <sup>99m</sup> Tc-pertechnetate    | Thyrotoxicosis                    | Differentiate between Graves' disease and thyroiditis<br>Diagnose autonomous toxic nodule                                      |
| 99mTc-MIBI                         | Hyperparathyroidism               | Localize parathyroid adenoma                                                                                                   |
|                                    | Heart                             |                                                                                                                                |
| <sup>99m</sup> Tc-Tetrofosmin/MIBI | Ischemic heart disease            | Diagnose myocardial ischemia, extent and severity                                                                              |
|                                    |                                   | Physiological significance of angiographic coronary stenosis                                                                   |
|                                    |                                   | Gatekeeper function to decide medical management vintervention (angioplasty/bypass surgery)                                    |
|                                    | Lung                              |                                                                                                                                |
| <sup>99m</sup> Tc-MAA              | Pulmonary embolism                | Exclude pulmonary embolism in dyspneic patient                                                                                 |
|                                    | Gastrointestinal system           |                                                                                                                                |
| <sup>99m</sup> Tc-Sulfur colloid   | Gastroparesis                     | Measurement of gastric emptying times in patients w bloated sensation, diabetics                                               |
|                                    | Gastro esophageal reflux<br>(GER) | Document presence of GER<br>And response to therapy                                                                            |
| 99mTc-labelled RBCs                | Occult GI bleeding                | Identify site of gastrointestinal bleeding                                                                                     |
|                                    | Kidneys                           |                                                                                                                                |
| 99mTc-EC/DTPA/DMSA                 | Hydronephrosis/hydroureter        | Diagnose /exclude obstructive uropathy                                                                                         |
|                                    | Renal failure                     | Document accurate GFR                                                                                                          |
|                                    |                                   | Renal donor evaluation                                                                                                         |
|                                    | Transplant                        | Diagnose Acute tubular necrosis, rejection, urinoma, lymphocele                                                                |
|                                    | Urinary infection                 | Diagnose cortical scarring                                                                                                     |
|                                    | Hypertension                      | Diagnose physiologically significant renal artery sten                                                                         |
|                                    | Musculoskeletal system            |                                                                                                                                |
| 99mTc-MDP                          | Bone pain                         | Diagnose stress fracture, metastases, metabolic bone disease, osteomyelitis                                                    |
|                                    | Joint pains                       | Diagnose joint inflammation                                                                                                    |
|                                    | Lymphatic system                  |                                                                                                                                |
| <sup>99m</sup> Tc-sulfur colloid   | Lymphedema                        | Confirm lymphatic obstruction as cause for limb eder                                                                           |
|                                    | Sentinel node in breast cancer    | Identify sentinel node in stage 1 breast cancer                                                                                |
|                                    | Hepatobiliary system              |                                                                                                                                |
| <sup>99m</sup> Tc-Mebrofenin       | Upper abdominal pain              | Gall bladder ejection fraction, sphincter of oddi<br>dysfunction, acute cholecystitis, biliary atresia                         |
|                                    |                                   | Document predicted                                                                                                             |
|                                    | Future remnant liver function     | remnant liver function in planned hepatic resections f                                                                         |

| Table 2: Utility of PET-CT                        |                                             |                                                                                                                                 |  |  |
|---------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| Radiopharmaceutical                               | Clinical situation                          | Information obtained                                                                                                            |  |  |
|                                                   | Oncology                                    |                                                                                                                                 |  |  |
| <sup>18</sup> F-FDG                               | Occult malignancy                           | Detect occult cancer                                                                                                            |  |  |
| <sup>18</sup> F-FLT                               | Staging of cancer                           | Map out extent of cancer                                                                                                        |  |  |
| <sup>18</sup> F-FET                               | Detection of recurrence                     | Detect relapse/recurrence                                                                                                       |  |  |
|                                                   | Response to therapy                         | PERCIST criteria for metabolic response to chemotherapy                                                                         |  |  |
|                                                   | Recurrence vs necrosis/edema                | Differentiate recurrence from response to therapy                                                                               |  |  |
| <sup>68</sup> Ga-DOTATATE                         | Neuroendocrine tumors                       | Gold standard scan for diagnosing<br>neuroendocrine tumors (carcinoids,<br>pheochromocytomas, insulinomas,<br>gastrinomas etc.) |  |  |
|                                                   |                                             | Response to therapy, recurrence                                                                                                 |  |  |
| <sup>68</sup> Ga-PSMA                             | Prostate cancer                             | Diagnosis of prostate cancer in patients with elevated PSA                                                                      |  |  |
|                                                   |                                             | Staging of prostate cancer                                                                                                      |  |  |
|                                                   |                                             | Detection of recurrence                                                                                                         |  |  |
|                                                   |                                             | Response to therapy                                                                                                             |  |  |
|                                                   | Neurology                                   |                                                                                                                                 |  |  |
| <sup>18</sup> F-FDG                               | Dementia                                    | Differentiate Alzheimer's disease from other dementias                                                                          |  |  |
|                                                   |                                             | Parkinson's plus syndromes<br>(Progressive Supranuclear Palsy,<br>Multi System Atrophy, Cortico Basal<br>Degeneration)          |  |  |
|                                                   | Paraneoplastic syndromes                    | Detection of occult malignancy as cause of paraneoplastic syndromes                                                             |  |  |
| <sup>18</sup> F-FET (Fluoro Ethyl Tyrosine)       | Tumors                                      | Detection of recurrence of brain tumors after therapy                                                                           |  |  |
|                                                   | Cardiology                                  |                                                                                                                                 |  |  |
| <sup>13</sup> N-Ammonia<br><sup>82</sup> Rubidium | Ischemic heart disease                      | Absolute myocardial flow quantification                                                                                         |  |  |
|                                                   |                                             | Coronary flow reserve estimation                                                                                                |  |  |
| <sup>18</sup> F-FDG                               | Myocardial viability                        | Detecting viable myocardium<br>in patients with low LEVF post<br>myocardial infarction                                          |  |  |
|                                                   | Myocardial sarcoidosis                      | Detection of active myocardial sarcoidosis                                                                                      |  |  |
|                                                   | Fever of Unknown Origin                     |                                                                                                                                 |  |  |
| <sup>18</sup> F-FDG                               | Investigation of choice in prolonged fevers | Focus of occult infection, infection or neoplasm                                                                                |  |  |

There are extensive metastatic lesions in the lungs along with metastatic abdominal lymphadenopathy. A small focus of neoplasm is seen in the right testicle.

Pre and post orchiectomy and chemotherapy MIP images showing complete resolution of metastatic disease indicating successful therapy (Figure 6).

#### Case 6

A 55 yr. old male with hypertension, dyslipidemia and

strong family history of ischemic heart disease suffered myocardial infarct in January 2011. He underwent coronary bypass surgery post infarction with arterial revascularization (LIMA to LAD, radial to OM-PDA). He presented in a year post bypass with angina and dyspnea. A myocardial perfusion scan with <sup>99m</sup>Tc-Tetrofosmin was performed (Figure 7).

Myocardial perfusion images in short axis (upper 4 rows from apex to base of heart. Upper row: stress images, **CHAPTER 225** 

| Table 3: Utility in therapy                                                                     |                                                                             |                                                                                            |  |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Radiopharmaceutical                                                                             | Clinical situation                                                          | Utility                                                                                    |  |  |
| <sup>131</sup> Iodine                                                                           | Thyrotoxicosis (Graves' disease,<br>Autonomous Functioning Toxic<br>Nodule) | Effective ablation of toxic thyroid gland. High cure rate                                  |  |  |
|                                                                                                 | Thyroid cancer                                                              | Post thyroidectomy remnant ablation, metastatic disease ablation                           |  |  |
| <sup>177</sup> Lu- DOTATATE                                                                     | Metastatic neuroendocrine cancer                                            | Effective arrest or regression of disease in 80% of patients                               |  |  |
| <sup>177</sup> Lu-PSMA                                                                          | Metastatic prostate cancer                                                  | Powerful potential therapy in<br>castrate and chemotherapy resistant<br>metastatic disease |  |  |
| <sup>153</sup> Samarium, <sup>89</sup> Strontium                                                | Painful skeletal metastases                                                 | Effective, lasting relief of metastatic bone pain                                          |  |  |
| <sup>90</sup> Yttrium-theraspheres/sirspheres                                                   | Metastatic hepatic disease                                                  | Effective reduction in tumor burden in hepatic metastases                                  |  |  |
| <sup>131</sup> Iodine-Lipiodol, <sup>188</sup> Rhenium<br>Lipiodol                              | Metastatic hepatic disease                                                  | Effective reduction in tumor burden in hepatic metastases                                  |  |  |
| <sup>90</sup> Yttrium, <sup>188</sup> Rhenium, <sup>169</sup> Erbium,<br><sup>166</sup> Holmium | Painful joints                                                              | Effective radio synovectomy with pain relief                                               |  |  |







Fig. 1

GRAVES' DISEASE



Fig. 3

## **Dopamine Transporter SPECT**



Normal dopamine transporter SPECT (TRODAT scan) showing symmetrical tracer uptake in bilateral caudates and putamen



Abnormal TRODAT scan in Parkinsons disease showing low uptake in left putamen

#### Fig. 4

following row: rest images.), row 5,6 vertical long axis slices from septum (left) to lateral wall (right) (row 5 post stress, row 6, resting) row 7,8 horizontal long axis slices from inferior wall to anterior wall.





Fig. 5







Images show significant global hypoperfusion on stress images, with stress induced left ventricular dilatation and right ventricular uptake, with complete normalization on resting images. These findings indicate a "high risk scan" pattern. Angiography was advised which showed left main ostial stenosis and a right coronary artery ostial stenosis with graft occlusion.



Paleet AR TETRO 2 11/7



Fig. 7

Myocardial perfusion imaging is vital to 1) diagnose myocardial ischemia 2) document extent and severity of ischemia, 3) to risk stratify patients into those who should be managed medically (low to intermediate risk scan pattern) and those who should undergo interventional revascularization (high risk scan pattern).

In conclusion, Nuclear medicine is an invaluable tool in diagnosis and management of several conditions enumerated in the above tables and illustrative cases.

#### REFERENCES

- R.D. Lele: Principles and Practice of Nuclear Medicine, 3<sup>rd</sup> edition, 2010 Arnold Heinemann.
- 2. Mettler and Guiberteau, Essentials of Nuclear Medicine Imaging, 6<sup>th</sup> edition, 2012, W.B. Saunders.
- 3. R. Wahl, Principles and Practice of PET and PET-CT, 2<sup>nd</sup> edition, 2008, Wolters Kluwer.

1031