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Introduction
Recognition of the benefits of strict glycaemic control in type 1 
diabetes1 and the landmark United Kingdom Prospective Diabetes 
Study (UKPDS)2,3 and the Kumamoto Study4 have clearly shown 
that glycaemic control matters not only in type 1, but also in type 
2 diabetes. Diabetic complications can be prevented by improved 
glycaemic control and in conjunction with adequate control 
of blood pressure and lipids. Since type 2 diabetes has a long 
asymptomatic phase, it is not uncommon to observe minimal or 
overt complications at the time of diagnosis.5 The “ticking clock” 
hypothesis of Haffner et al6 that macrovascular coronary artery 
disease precedes the onset of type 2 diabetes while microvascular 
complications accompany the diagnosis of type 2 diabetes has 
put the onus of early recognition of abnormal glucose tolerance 
on individuals at risk to develop diabetes. Our ability, however, 
to reach the rather low long-term glycaemic targets is, at best, 
limited in view of the complex and progressive nature of the 
disease and with hitherto available therapeutic strategies, only 
15-25% are able to achieve a good glycaemic control.7

Type 2 diabetes is characterized by insulin resistance and 
impaired β-cell secretory function.8 Loss of acute insulin response 
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to a carbohydrate load occurs when fasting plasma glucose levels 
reach 115 mg/dl9 and by the time it reaches to 140mg/dl, 75% 
of β-cell function is lost. The deposition of amyloid has been 
associated with progressive loss of β-cell function and mass.10 
Insulin resistance in the hepatocyte and peripheral tissues leads to 
unrestrained hepatic glucose production (HGP) and diminished 
glucose uptake and utilization.8,11 It could be due to defects in 
insulin receptor binding, decreased numbers of receptors or 
post-receptor attenuation of insulin action.8 In addition, the 
high circulating free fatty acid levels further aggravate insulin 
resistance and adversely affect β-cell secretion, a phenomenon 
known as lipotoxicity.12

Type 2 diabetes may be present 9 to 12 yrs before diagnosis13 and 
a study in Pima Indians indicates that defects in both insulin 
secretion and action occurs early in the course of the disease14 and 
also predicts the transition from normal to IGT and from IGT to 
diabetes.15 Because of its progressive nature, in UKPDS study, it 
was clearly shown that the percentage of patients who achieved 
a HbA1c level lower than 7% with diet alone or monotherapy 
with insulin, a sulfonylurea or metformin decreased from 50% 
at 3 yrs to less than 25% at 9 yrs of follow-up.16 Further, patients 
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with Type 2 diabetes have often lost 50% of β-cell function at 
diagnosis of diabetes17 and over ensuing years is associated with 
glycaemic deterioration regardless of therapy.18 The difficulty 
in maintaining HbA1c at target levels may be related to several 
behavioral factors (e.g. lack of adherence to diet, exercise, 
medication) but primarily reflects the underlying progressive 
decline in β-cell function.17

The newer drugs already in use, or in the process of being 
developed for management of type 2 diabetes are classified 
into (1) insulin secretagogues (2) insulin sensitizers (3) drugs 
delaying gastrointestinal glucose absorption (4) drug acting on 
intermediary metabolism to reduce hepatic glucose output and 
(5) insulin mimetic drugs (Table 1).

A comparative evaluation of various oral drugs used in treatment 
of type 2 diabetes mellitus is shown in Table 2.

What is the Optimal 
Treatment Regimen?
Initial therapy is shifting from secretagogues and α-glucosidase 
inhibitors, which effectively lower only plasma glucose 
concentrations, to insulin sensitizers-drugs that lower plasma 
glucose levels while also reducing cardiac risk factors - that 
it is hoped will lead to a decrease in the incidence of cardiac 
events. Metformin acts as insulin sensitizer by inducing weight 
loss through decreasing appetite and, perhaps, by increasing the 
mobilization of glucose transporters in the muscle, however, the 
sensitizing effects of metformin are much weaker than those of 
TZDs.20

Treatment with Insulin Sensitizers

TZDs
TZDs shift adipocytes from the peritoneum to subcutaneous 
space21,22 reduce circulating free fatty acids (FFA) levels and 
increase FFA storage in the subcutaneous adipocytes23 and 
produce an improvement in the profile of cardiac risk factors 
associated with insulin resistance.24-28 Besides TZDs therapy 
have been shown to be associated with decrease in the thickness 
of tunica media and intima of carotid arteries and decrease in 
the incidence of restenosis of the coronary arteries following 
angioplasty.29-31

TZDs and β-Cell Function
The most compelling reason to use TZDs in type 2 diabetic 
subjects is its ability to preserve or improve β-cell function. In 
the β-cell, increased triglyceride levels due to defective activity of 
leptin32 leads to an increase in intracellular FFAs which increase 
the activity of nitric oxide synthase and thus raise nitric oxide 
levels accelerating β-cell apoptosis.33 TZD therapy provide β-
cell stabilization or even rejuvenation 34 and decrease proinsulin-
to-insulin ratio.35 It also increases endogenous insulin levels36 
and in the Troglitazone In Prevention of Diabetes (TRIPOD) 
study, troglitazone treatment resulted in >50% decrease in the 
development of diabetes.37 The characteristics of TZD-induced 
fluid retention and its mechanism remain poorly defined38 but 
may be due to the potentiation of insulin effects on sodium 
and water retention. The fluid retention should not necessarily 
be equated with worsening HF,38 and these patients should not 

Table 1 : Target drug therapy for type 2 DM

 Functional Class* Drugs

1. Insulin secretagogues Sulfonylureas
Meglitinide derivatives 
(Repaglinide, Nateglinide)
GLP-1
Amylin antagonists

2. Insulin sensitizers Metformin
Thiazolidinediones
(Troglitazone,
Rosiglitazone,
Pioglitazone)
Anti-obesity drugs

3. Inhibitors of GI glucose absorption α-glucosidase inhibitors 
(Acarbose, Miglitol)
Amylin analogue
(Pramlintide) 

4. Inhibitors of intermediary metabolism Antilipolytic and 
Antihyperlipidemic agents
Fatty acid oxidation
inhibitors

5. Insulin-mimetic drugs Insulin analogues
IGF-1
Vanadium salts

* Functional class 1,4 and 5 have hypoglycemic, while 2 and 3 have anti 
hyperglycemic mode of response.

Table 2 : Comparison of different oral drugs used in management of type 2 diabetes

 Sulfonylureas  Repaglinide Metformin Thiazolidinediones Acarbose 

Decrease in FPG(mg/dl) 60-70 60-70 35-40 20-30
Decrease in HbA1c(%) 1.5-2.0 1.5-2.0 0.5-1.0 0.7-1.0
Triglycerides No effect or mild ↓ ↓ ↓ ↓
HDL-C No effect ↑ ↑ No effect
LDL-C No effect ↓ ↑ No effect
Body weight ↑ → ↑ No effect
Plasma insulin ↑ ↓ ↓ No effect
Adverse Events Hypoglycemia,   Wt. gain GI intolerance, Lactic acidosis Wt. gain, Fluid retention, 

Hepatotoxicity
GI intolerance
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necessarily be deprived of its usefulness as long as they are being 
closely monitored for weight gain, fluid retention, and other signs 
and symptoms of decompensated HF.38

Metformin and TZD Combination Therapy 
Even though the United Kingdom Prospective Diabetes Study 
(UKPDS) showed a decrease in the incidence of cardiac events 
with metformin use in overweight patients with type 2 diabetes, 
metformin is a weak insulin sensitizer when compared with a 
TZD.20  The combination therapy of metformin and TZD 
in small doses increases the efficacy, minimize side effects, 
improve compliance and save costs compared with a large 
dose of one drug.40 Increased efficacy results from the action of 
metformin on the liver complementing the actions of the TZD 
and stabilizing or rejuvenating pancreatic β-cell. Metformin is 
however, contraindicated in all patients with heart failure as its 
use is associated with an increased risk of potentially lethal lactic 
acidosis.41

However, the major advantage of using an insulin sensitizer 
alone or in combination with another sensitizer is the absence 
of severe or even moderate degree of hypoglycemia and better 
glycemic control. A lower level of HbA1c has been shown to be 
associated with reduced cardiac mortality and total mortality.42-

45 If once-daily combination of metformin and TZD does not 
achieve the target level of HbA1c, the insulin sensitizers should 
be administered twice daily. If building up to a maximum twice-
daily regimen does not achieve the desired glycemic goals, then 
a secretagogue (i.e., a sulfonylurea, repaglinide, or nateglinide) 
should be added.

Triple Oral Therapy
First described in 1998, triple oral therapy consisting of 
metformin, a TZD, and a sulfonylurea has achieved target 
HbA1c levels provided that a third agent was not added when 
the difference between the current and target HbA1c values was 
>1.5%.46 During the 6 months after troglitazone was replaced 
with rosiglitazone in a group of patients receiving triple 
therapy, 24% had their secretagogue dose reduced or stopped, 
7% discontinued suggesting a continued improvement in β-
cell function,47 and at 3-year 70% maintained HbA1c of 6.9% 
with significant increase in endogenous insulin production.48 
At 5-year 62% of these patients continued to have an average 
HbA1c of 7.1%.36 A double-blind study of therapy failure with 
metformin and sulfonylurea showed that patients randomized to 
the addition of rosiglitazone had a return of first-phase insulin 
response, an effect that did not occur in patients randomized to 
the addition of insulin.49

a-Glucosidase Inhibitors 
Because α-glucosidase inhibitors lower only postprandial50 and 
not fasting plasma glucose levels, the efficacy of these agents 
is limited to a 0.5% to 1.0% decrease in HbA1c value.51,52 The 
acarbose has been associated with a significant reduction in the 
risk of cardiovascular disease and hypertension53 (STOP-NIDD 
Trial). Side effects such as excess flatulence due to undigested 
carbohydrate fermented by bacteria in the large bowel are 
troublesome to most patients. However, patients who are renally 
compromised can attain a 5-times higher peak plasma drug 
concentration, possibly leading to hepatotoxicity.53,54 Therefore, 

in patients whose serum creatinine concentration is >2.0 mg/dL, 
α-glucosidase inhibitors should not be used.

Secretagogues
All secretagogues cause the release of more insulin at any given 
plasma glucose level by closing the energy-sensitive potassium 
channel in the cell membrane of the β-cells. This leads to β-cell 
depolarization and an influx of calcium, resulting in increased 
exocytosis and release of insulin.56,57  The first-and second-
generation sulfonylureas have a more prolonged attachment to 
the sulfonylurea receptor, causing a more prolonged release of 
insulin, and are more likely to be associated with hypoglycemia.57 
In addition, glyburide has been shown to decrease the counter-
regulatory release of both glucagon from the pancreas and growth 
hormone from the pituitary gland, which further increases the 
risk of hypoglycemia.58

Another problem with first- and second-generation sulfonylureas 
is the closing of energy-sensitive potassium channels not only in 
the all-membrane of pancreatic β-cell but also in cardiomyocytes. 
The process of ischaemic preconditioning during myocardial 
ischaemia does not occur when potassium-adenosine triphosphate 
(k.ATP) are blocked with the result the ischaemia is sustained 
and risk of myocardial damage increases, when it may have been 
averted.55 At the Mayo Clinic, coronary angioplasty after acute 
MI was found to be associated with increased 48-hour mortality 
in patients with diabetes who were treated with sulfonylurea.59 
Another study showed a decrease in the ejection fraction of 
ischaemic myocardium with glyburide but not with insulin.60 The 
results of these studies confirm that ischaemic preconditioning 
is blocked in both non-diabetic and diabetic myocardium by 
glyburide but not the third-generation glimepiride.61,62

A recent retrospective study63 suggested that attenuation of 
electrocardiographic ST-segment elevation during moderate-sized 
acute MI occurs in diabetic patients treated with sulfonylurea 
drugs. During acute MI with creatinine phosphokinase (CPK) 
levels between 500 and 1,000 mg/dL, those patients treated 
with sulfonylurea drugs were found to have a reduced magnitude 
of ST elevation as compared with subjects with diabetes who 
were not treated with sulfonylurea drugs. These patients were 
less likely to meet the standard ECG criteria for thrombolytic 
therapy. Large-scale evaluations are necessary to further clarify 
the impact of sulfonylurea treatment and evaluation of acute MI 
in this population.63

Maintaining Glycemic Control 
with Exogenous Insulin
When triple therapy fails, the addition of a subcutaneous insulin 
injection is needed to regain glycemic control. A premixed insulin, 
preferably of rapid-acting insulin with a compatible intermediate-
acting insulin (e.g., insulin analogue lispro 75/25 or aspart 70/30 
mix), may be administered with the evening meal, or the long-
acting insulin glargine may be injected at bedtime. To maximize 
the potential of these insulins, start with a small dose (0.2 per 
kg or 10 IU) and titrate by 20% increments at intervals of 2 to 3 
days until either the fasting plasma glucose value is ≤ 110 mg/dL 
or nocturnal or early morning hypoglycemia occurs.
If daytime glycemic control cannot be maintained by means 
of oral agents and a single injection of insulin, options include 
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expanding the regimen to two injections of a premixed insulin 
or administering a preprandial dose of short-acting insulin 1 to 3 
times daily in addition to glargine at bedtime.64 At the same time, 
discontinuation of the secretagogue is suggested and maintenance 
of a single or dual insulin-sensitizer regimen is recommended; 
insulin therapy for type 2 diabetes, especially in obese patients, 
offers better glycemic control when combined with an insulin 
sensitizer than when administered as monotherapy.65

Exploring New therapies in 
Diabetes - INCRETIN MIMETICS 
The observation that food ingestion or enteral glucose 
administration provoked a greater stimulation of insulin release 
compared with similar amounts of energy (glucose) infused 
intraveously66,67 led to the development of the incretin concept. 
Hence, it was postulated that gut-derived signals stimulated by 
oral nutrient ingestion represent potent insulin secretagogues 
responsible for the augmentation of insulin release when energy 
is administered via the gut versus the parenteral route. Although 
several neurotransmitters and gut hormones posses incretin-like 
activity, the considerable evidence from immunoneutralization, 
antagonist and knockout studies suggest that glucagon-like 
peptide (GLP-1) represent the dominant peptides responsible for 
the majority of nutrient-stimulated insulin secretion. 

Incretin : Synthesis, Secretion and degradation
Glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 
are members of the glucagons peptide superfamily. Ingestion of 
a mixed meal or a meal enriched with specific fats and complex 
carbohydrates is particularly effective in stimulating GIP and 
GLP-1 release in human subjects. Circulating levels of GIP (1-
42) are normal or slightly increased in type 2 diabetic subjects 
in the basal or postprandial state.69 In contrast, subjects with 
diabetes or impaired glucose tolerance exhibit modest but 
significant reductions in levels of meal stimulated circulating 
GLP-1.69,70 Furthermore, meal-induced increase in GIP and GLP-
1 secretions are inversely correlated with the extent of insulin 
resistance detected in human subjects.71

Biological actions of GLP-1
	 Stimulate insulin secretion and suppresses glucagons 

secretion
	 Slows gastric emptying and reduces food intake

	 Increases β-cell mass and maintains β-cell function 
	 Improves insulin sensitivity and enhances glucose disposal
Single or repeated subcutaneous injection of native GLP-
1 decrease blood glucose in human subjects72,73 and the 
glucose lowering effect is no longer evident 1-2 h after peptide 
injection.74,75 Continuous IV or subcutaneous infusion of GLP-1 
has been shown to be highly effective in lowering blood glucose 
in diabetic subjects72-79 when compared with peptide infusion 
for 16 hrs76 however, rapid degradation and clearance of native 
and exogenously administered GLP-1 have spurred the clinical 
development of degradation resistant GLP-1 analogues with 
longer duration of action in vivo.
Exendin-4, a naturally occurring 39-aminoacid GLP-1 agonist 
isolated from the salivary gland venom of the lizard Heloderma 
suspectum,81 exhibits 53% aminoacid identity to mammalian 
GLP-1.81,82 Intravenous infusion of exendin-4 lowered fasting 
and postprandial blood glucose in normal healthy volunteers and 
was associated with a 19% reduction in caloric consumption.83 
It exerted a similar effects on insulin secretion after IV infusion 
in diabetic subjects,84 and subcutaneous daily administration in 
type 2 diabetic subjects reduced HbA1c from 9.1 to 8.3% over 
a 1-month treatment period.85 Exendin-4 has been evaluated 
in eight phase 2 trials in 323 type 2 diabetes subjects receiving 
dosages of 0.05-2.0 µg/kg subcutaneously. Nausea and vomiting 
were the principal side effects observed.86

Exendin-4 treatment (0.08 µg/kg s.c., b.i.d. or t.i.d.) over one 
month in 109 patients treated with sulfonylurea or metformin, 
alone or in combination resulted in significant reduction in levels 
of serum fructosamine, HbA1c, and mean postprandial glucose.87 

Currently it is being evaluated for the treatment of type 2 diabetes 
in phase 3 trials.
NN2211 (liraglutide) is a fatty acid linked DPP-IV resistant 
derivative of GLP-1, has been shown to reduce fasting and 
postprandial glycaemia in diabetic subjects after a single  10 
µg/kg subcutaneous injection at 11:00 p.m., in association with 

Table 3 : Exploring New therapies in Diabetes-Incretin 
mimetics.

GLP-1 Receptor Agonists
	GLP-1 Analogues
	 -  NN 2211	 Liraglutide
	 -  CJC-1131	 DAC-GLP-1
	Extendin Analogues
	 -  AC 2993 	 Exendin-4  (Exenatide)
	 -  AC 2993	 Exendin-4 Long acting
	 -  ZP-10
DPP-IV Inhibitors
	LAF 237
	MK 0431

Table 4 : Properties and biological actions of GIP and  
GLP-1

GIP GLP-1

42-amino acid peptide 30/31-amino acid peptide
Released from duodenum Released from distal small bowel 

and colon
NH2-terminal inactivation by 
DPP-IV

NH2-terminal inactivation by 
DPP-IV

Stimulates insulin secretion Stimulates insulin secretion
Minimal effect on gastric 
emptying

Inhibits gastric emptying

No effect on glucagon secretion Inhibits glucagon secretion
No regulation of satiety and body 
weight

Inhibits food intake and weight 
gain

Promotes expansion of β-cell mass Promotes expansion of  β-cell mass
Normal GIP secretion in diabetic 
subjects

↓ed GLP-1 secretion in diabetic 
subjects

Defective GIP response in type 2 
diabetes

Preserved GLP-1 response in type 
2 diabetes



Medicine Update 2005
290

inhibition of gastric emptying and reduced levels of circulating 
glucagons.89 NN2211 has been tested in phase 2 clinical trials.

Inhibition of DPP-IV for the treatment of type 2 
diabetes
DPP-IV, the principal enzyme responsible for incretin 
inactivation,90,91 in a single-dose escalation study of P32/98 in 
healthy male volunteers improved oral glucose tolerance with 
increase levels of GLP-I. A 4-week trial of NUP DPP 728 in 
type 2 diabetic subjects (mean entry HbA1c of ∼ 7.6%) produced 
significant glucose lowering in mean HbA1c to 6.9%92 DPP-IV 

inhibitor, LAF237, is currently in phase 2 clinical trials. DPP-
IV also exhibits catalytic activity against a number of peptide 
substrates90,93 and hence, the long-term safety of sustained DPP-
IV inhibition merits careful scrutiny.	

GLP-1R agonists and DPP-IV inhibitors: Unanswered 
questions
GLP-1 exhibits several distinct advantages desirable in a 
therapeutic agent for treating type 2 diabetes (Table 4). GLP-1 
R agonists produce remarkable effects on β-cell proliferation and 
cytoprotection and therefore its potential to prevent progression 
to β-cell failure in diabetic subjects is intriguing, but largely 
undocumented.
DPP-IV inhibitors will be able to achieve the same pharmacological 
elevation in levels of circulating GLP-1 (Figure 2) compared with 
injectable GLP-1 based drugs, and are likely to be less potent 
compared with injectable GLP-1 R agonists (Table 5).
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